skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Birch, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We are developing a new method for the carrier profiling of semiconductors that shows promise for nm-resolution which is required at the new sub-10 nm lithography nodes. A modelocked ultrafast laser focused on the tunneling junction of a scanning tunneling microscope (STM) generates a regular sequence of pulses of minority carriers in the semiconductor. Each pulse of carriers has a width equal to the laser pulse width (e.g. 15 fs). In the frequency domain, this is a microwave frequency comb (MFC) with hundreds of measurable harmonics at integer multiples of the laser pulse repetition frequency (e.g. 74 MHz). After the minority carriers diverge rapidly into the semiconductor as a Coulomb explosion, the pulses become broader and decay, so that the MFC has less power with a spectrum limited to the first few harmonics. The frequency-dependent attenuation of the MFC is determined by the resistivity of the semiconductor at the tunneling junction so SFCM is closely related to Scanning Spreading Resistance Microscopy (SSRM). Harmonics of the MFC are measured with high speed, and high accuracy because the signal-to-noise ratio is approximately 25 dB due to their extremely narrow (sub-Hz) linewidth. Now we superimpose a low-frequency signal (e.g. 10 Hz) on either the applied bias or the voltage that is applied to the piezoelectric actuators of the STM to cause sidebands at each harmonic of the MFC which are less affected by the artifacts. 
    more » « less